Mixed Finite Element Analysis of Thermally Coupled Quasi-newtonian Flows

نویسندگان

  • JIANSONG ZHANG
  • JIANG ZHU
  • XIJUN YU
  • ABIMAEL F. D. LOULA
  • LUIZ BEVILACQUA
  • Walter Allegretto
  • L. BEVILACQUA
چکیده

A mixed finite element method combined with a fixed point algorithm is proposed for solving the thermally coupled quasi-Newtonian flow problem. The existence and uniqueness of the mixed variational solution are established. A more general uniqueness result for the original system problem is presented. The convergence of the approximate solution is analyzed and the corresponding error estimates are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimation for a Dual Mixed Finite Element Method for Quasi–newtonian Flows Whose Viscosity Obeys a Power Law or Carreau Law

Abstract: A dual mixed finite element method, for quasi–Newtonian fluid flow obeying the power law or the Carreau law, is constructed and analyzed in Farhloul–Zine [13]. This mixed formulation possesses good local (i.e., at element level) conservation properties (conservation of the momentum and the mass) as in the finite volume methods. In Farhloul–Zine [12], we developed an a posteriori error...

متن کامل

Discontinuous Galerkin Finite Element Approximation of Quasilinear Elliptic Boundary Value Problems Ii: Strongly Monotone Quasi-newtonian Flows

In this article we develop both the a priori and a posteriori error analysis of hp– version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ R, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm which are explicit in the local ...

متن کامل

A Posteriori Error Estimation for a Dual Mixed Finite Element Approximation of Non–newtonian Fluid Flow Problems

A dual mixed finite element method, for quasi–Newtonian fluid flow obeying to the power law, is constructed and analyzed in [8]. This mixed formulation possesses local (i.e., at element level) conservation properties (conservation of the momentum and the mass) as in the finite volume methods. We propose here an a posteriori error analysis for this mixed formulation.

متن کامل

A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law

The aim of this work is a construction of a dual mixed finite element method for a quasi–Newtonian flow obeying the Carreau or power law. This method is based on the introduction of the stress tensor as a new variable and the reformulation of the governing equations as a twofold saddle point problem. The derived formulation possesses local (i.e. at element level) conservation properties (conser...

متن کامل

QUASI-NORM TECHNIQUES FOR FINITE ELEMENT APPROXIMATION OF p-LAPLAICAN

The p-Laplacian problem is one of the typical examples of degenerate nonlinear systems arising from nonlinear diffusion and filtration, powerlaw materials and quasi-Newtonian flows. In this article we give a survey of quasi-norm techniques to establish optimal error estimates for finite element approximation of p-Laplacian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013